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ABSTRACT- In gene expression analysis, selecting 
informative genes is essential for uncovering biological 
mechanisms and identifying potential biomarkers. 
However, conventional gene selection methods often 
struggle with scalability and parameter tuning, limiting their 
effectiveness in large-scale datasets and algorithmic 
optimization. To overcome these challenges, we 
propose Autoencoder-based Adaptive Multi-Objective 
Particle Swarm Optimization for Gene Selection 
(AAMOPSO). Our approach incorporates an autoencoder-
based preprocessing step to enhance scalability by learning 
a compressed representation of gene expression data, 
reducing dimensionality while retaining critical features. 
Additionally, we introduce an Adaptive Parameter 
Tuning mechanism within the Multi-Objective Particle 
Swarm Optimization (MOPSO) framework, dynamically 
adjusting algorithm parameters based on real-time 
performance metrics. Extensive experiments on four 
benchmark microarray datasets demonstrate that 
AAMOPSO consistently outperforms existing state-of-the-
art methods in classification accuracy and the compactness 
of selected gene subsets. 

KEYWORDS- Microarray gene selection, multi-
objective optimization, particle swarm optimization, 
autoencoder.  

I. INTRODUCTION 
High-throughput genomic technologies, such as 
microarrays and RNA sequencing, have revolutionized 
biomedical research by enabling the simultaneous 
measurement of gene expression levels across tens of 
thousands of genes [1]. These technologies generate vast 
amounts of high-dimensional data, offering unprecedented 
opportunities to understand the molecular mechanisms 
underlying complex diseases and identify diagnostic and 
prognostic biomarkers [2]. However, analyzing such high-
dimensional data is non-trivial. One of the most critical 
steps in this process is gene selection, that is to identify a 
subset of informative genes most relevant to a specific 
phenotype, such as disease presence, progression, or 
treatment response [3]. Gene selection enhances predictive 
model accuracy, improves interpretability, reduces 

computational overhead, mitigates the curse of 
dimensionality, and facilitates biologically meaningful 
insights [4]. Nevertheless, gene selection remains 
challenging due to the high feature-to-sample ratio in 
genomic datasets, increasing the risk of overfitting and 
rendering many traditional machine learning methods 
ineffective [5]. 
Traditional gene selection approaches fall into three 
categories: filter, wrapper, and embedded methods. Filter 
methods, such as mutual information and correlation-based 
techniques, are computationally efficient but often ignore 
feature dependencies and classifier-specific performance 
[6]. Wrapper methods evaluate gene subsets based on 
classifier performance, yielding better results at the cost of 
high computational complexity [7]. Embedded methods, 
like LASSO and decision tree-based feature importance, 
integrate selection within model training but still struggle 
with ultra-high dimensionality [8]. As dimensionality 
increases, even advanced optimization-based methods face 
significant challenges. Among metaheuristic techniques, 
Multi-Objective Particle Swarm Optimization (MOPSO) 
has gained attention for its ability to optimize conflicting 
objectives, such as classification accuracy and the number 
of selected genes by identifying Pareto-optimal solutions 
(POS) [9]. 
MOPSO, inspired by swarm intelligence, explores the 
feature space via particles guided by their personal best 
positions and the swarm’s best solutions [10][11]. This 
mechanism naturally suits multi-objective optimization but 
critically depends on parameter settings: inertia weight, 
cognitive and social coefficients, and swarm size [12]. Poor 
parameter choices can lead to premature convergence, 
stagnation, and failure to find meaningful solutions [13]. 
Worse, optimal parameters vary across datasets, requiring 
manual tuning; a time-consuming and suboptimal process 
that limits MOPSO’s practical usability in gene selection 
[14]. 
Another major bottleneck is scalability. As gene expression 
data dimensionality grows, the search space expands 
exponentially, making efficient exploration difficult [15]. 
Parallel or distributed MOPSO implementations improve 
runtime but do not fundamentally resolve high-dimensional 
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search challenges [16]. Moreover, these approaches still 
rely on fixed parameters, inheriting the same limitations. 
To address these challenges, we propose Autoencoder-
based Adaptive Multi-Objective Particle Swarm 
Optimization (AAMOPSO), integrating unsupervised deep 
learning for dimensionality reduction and adaptive MOPSO 
parameter tuning. First, an autoencoder compresses gene 
expression data into a lower-dimensional latent space, 
preserving essential features while reducing noise [17]. 
Unlike filter methods, AAMOPSO conducts selection on 
the original gene set, ensuring biological interpretability. 
Second, a dynamic parameter adjustment mechanism adapts 
MOPSO’s inertia weight, learning coefficients, and swarm 
size based on real-time metrics like convergence rate, 
swarm diversity, and Pareto front spread [18]. This 
eliminates manual tuning and enhances robustness across 
datasets. 
By combining these innovations, AAMOPSO overcomes 
key limitations of existing methods: (1) standard MOPSO 
struggles with high dimensionality and static parameters, 
(2) parallel MOPSO improves speed but not search 
efficiency, and (3) autoencoder-based methods often fail to 
link feature transformation with selection. AAMOPSO 
bridges this gap, enabling scalable, interpretable, and high-
performing gene selection for precision medicine. 
    The paper is structured as follows: Section 2 reviews 
related work, Section 3 details AAMOPSO’s methodology, 
Section 4 describes experiments and results, and Section 5 
concludes with future directions. 

II. RELATED WORK 
Recent advances in multi-objective particle swarm 
optimization (MOPSO) have demonstrated significant 
potential for gene selection in high-dimensional biomedical 
datasets. Several studies have explored enhanced MOPSO 
variants to address the challenges of feature selection, 
classification accuracy, and biological interpretability. 
For instance, Azadifar and Ahmadi proposed a graph-based 
many-objective PSO algorithm for medical diagnosis, 
incorporating gene interaction networks to improve 
selection robustness [19]. Their approach leveraged 
topological properties of biological networks but faced 
scalability limitations with ultra-high-dimensional data. 
Similarly, Rostami et al. integrated MOPSO with node 
centrality measures, enhancing feature relevance by 
considering both statistical significance and biological 
network importance [20]. While effective, their method 
relied heavily on prior biological knowledge, which may 
not always be available. 
More recent works have focused on adaptive and 
neighborhood-preserving strategies. Mehta et al. introduced 
an adaptive neighborhood-preserving MOPSO 
(ANPMOPSO) that maintains local feature structures while 
optimizing classification performance [14]. Their method 
improved stability in gene selection but required extensive 
parameter tuning. In another study, Mehta et al. presented 
MORPSO_ECD+ELM, a unified framework combining 
MOPSO with an extreme learning machine for 
simultaneous gene selection and cancer classification [13]. 
This approach achieved competitive accuracy but struggled 
with interpretability due to the black-box nature of ELMs. 
Despite these advancements, critical gaps remain: (1) most 
MOPSO-based methods rely on static parameter 

configurations, limiting adaptability across diverse datasets; 
(2) high-dimensional gene expression data still pose 
computational challenges; and (3) few approaches 
effectively balance feature reduction with biological 
interpretability. Our proposed AAMOPSO gene selection 
method addresses these limitations by integrating 
unsupervised deep learning for dimensionality reduction 
and dynamic parameter adaptation, enabling more efficient 
and robust gene selection without sacrificing biological 
relevance. This highlights the need for an adaptive, 
scalable, and interpretable MOPSO framework, positioning 
AAMOPSO as a novel solution that bridges deep learning 
and evolutionary optimization for improved biomarker 
discovery. 

III. METHODOLOGY 
The proposed AAMOPSO method is designed to enhance 
gene selection by addressing two major challenges: high 
dimensionality and parameter sensitivity. Initially, a deep 
autoencoder is employed to learn a compressed and noise-
reduced representation of the gene expression data, 
effectively reducing dimensionality while retaining critical 
biological features. This compressed data is then used 
within a MOPSO framework to optimize both classification 
accuracy and the number of selected genes. To improve 
convergence and solution quality, an adaptive parameter 
tuning strategy is integrated into the MOPSO process, 
allowing dynamic adjustment of inertia weight and 
acceleration coefficients based on the swarm’s 
performance. This combined strategy ensures more efficient 
exploration and exploitation of the search space, leading to 
the identification of compact and highly informative gene 
subsets. 

A. Autoencoder Preprocessing 
An autoencoder is a type of artificial neural network used 
for unsupervised learning of efficient codings. It consists of 
an encoder network that maps the input data to a lower-
dimensional representation (encoding), and a decoder 
network that reconstructs the original input from the 
encoded representation. The autoencoder learns to encode 
the input data into a lower-dimensional latent space and 
then decode it back to the original input. This process 
enables the autoencoder to capture the most important 
features or patterns in the data while reducing its 
dimensionality. In our AAMOPSO for gene selection, the 
autoencoder can be trained using raw gene expression data. 
Once trained, it can be used to preprocess the gene 
expression data by encoding it into a lower-dimensional 
representation. 

 
Figure 1: The Visualization Description of and Autoencoder 

The pre-processing step involves passing the raw gene 
expression data through the trained autoencoder to obtain 
the encoded representation, which contains the essential 
features of the input data in a more compact form. 
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Mathematically, the encoding process of an autoencoder 
can be represented as follows: 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜎𝜎(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒)  (1) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the raw gene expression data matrix, 
𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒  and 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒  are the weights and biases of the 
encoder network respectively. 𝜎𝜎 is the activation function 
(e.g., sigmoid, ReLU) applied elementwise to the output. 
The resulting encoded data matrix represents a lower-
dimensional representation of the original gene expression 
data, capturing the most salient features or patterns in the 
data. This lower-dimensional representation obtained 
through autoencoder preprocessing used as input to the 
AAMOPSO algorithm for gene selection, enabling more 
efficient exploration of the solution space and addressing 
scalability issues. 

Algorithm 1: Autoencoder Preprocessing for Gene Expression 
Data 
Input: 
- 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, ℎ𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸units, 𝑅𝑅𝐸𝐸𝑎𝑎𝑖𝑖𝑎𝑎𝑅𝑅𝑎𝑎𝑖𝑖𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒, 𝑙𝑙𝐸𝐸𝑅𝑅𝑙𝑙𝐸𝐸𝑖𝑖𝐸𝐸𝑙𝑙𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒, 𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸ℎ𝑠𝑠 
Output: 
- 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 
Initialization: 
1. Initialize autoencoder neural network with one hidden layer. 
   - Set input size to number of genes in 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
   - Set hidden layer size to ℎ𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸units. 
   - Initialize weights and biases randomly. 
   - Choose activation function (𝑅𝑅𝐸𝐸𝑎𝑎𝑖𝑖𝑎𝑎𝑅𝑅𝑎𝑎𝑖𝑖𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒). 
   - Set 𝑙𝑙𝐸𝐸𝑅𝑅𝑙𝑙𝐸𝐸𝑖𝑖𝐸𝐸𝑙𝑙𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒 and 𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸ℎ𝑠𝑠 for training. 
Training: 
2. Train autoencoder: 
   for epoch = 1 to epochs do: 
      for each sample in 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 do: 
         Forward pass: 
         - Compute 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑓𝑓𝑑𝑑𝑜𝑜𝑓𝑓𝑑𝑑 using encoder network. 
         Backpropagation: 
         - Update weights and biases using reconstruction error 
gradient. 
Encoding: 
3. Encode gene expression data: 
   for each sample in 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 do: 
      - Compute 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 using trained encoder network. 
Output: 
4. Return 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
End Algorithm 

B. Initialization 
In the initialization step of the AAMOPSO for gene 
selection, the MOPSO algorithm is initialized with various 
parameters essential for the optimization process. These 
parameters include the swarm size (𝑁𝑁), which determines 
the number of particles or candidate solutions in the 
population, and the maximum number of 
generations (𝐺𝐺𝑚𝑚𝑑𝑑𝑚𝑚), defining the termination criterion for 
the optimization process. Additionally, parameters such as 
the inertia weight (𝑅𝑅), cognitive learning factor (𝐸𝐸1), and 
social learning factor (𝐸𝐸2),  are set to control the particles' 
movement and exploration-exploitation balance. 
Furthermore, the positions and velocities of each particle 
within the search space are randomly initialized. The 
position of a particle represents a potential solution or gene 
subset, while the velocity influences the particle's 
movement towards promising regions of the search space. 

Random initialization ensures diversity in the initial 
population, allowing for exploration across different regions 
of the solution space. This diversity is crucial for the 
optimization process to avoid premature convergence to 
suboptimal solutions and facilitate the discovery of a 
diverse set of Pareto-optimal solutions during the 
optimization process. Overall, this initialization step sets the 
stage for the subsequent optimization process in 
AAMOPSO, providing the foundation for effective gene 
selection. 

C. Fitness Evaluation 
In gene selection tasks, objective functions play a crucial 
role in quantifying the quality of selected gene subsets. In 
the proposed AAMOPSO for gene selection, two objective 
functions are defined to guide the optimization process. 
Firstly, (𝑓𝑓1(𝐴𝐴𝐸𝐸𝐸𝐸)), representing the classification accuracy 
of the gene subset using a classifier such as Support Vector 
Machine or Random Forest, serves as a measure of the 
predictive performance of the selected genes. This objective 
function aims to maximize the accuracy of the classification 
model built upon the selected genes, ensuring that the 
chosen subset contributes effectively to the predictive 
power of the model. Secondly,  (𝑓𝑓2(𝑁𝑁𝑁𝑁)), representing the 
number of genes in the subset, serves as a minimization 
objective. The goal of this objective function is to minimize 
the number of genes selected while maintaining high 
classification accuracy. By minimizing the gene subset size, 
the algorithm aims to identify a compact and informative 
set of genes, facilitating biological interpretation and 
reducing computational complexity.  
     To assign fitness values to each particle we combine 
these two objective functions, AAMOPSO seeks to strike a 
balance between maximizing classification accuracy and 
minimizing the number of selected genes, ultimately 
leading to the discovery of robust and parsimonious gene 
subsets with high predictive performance. Therefore, two 
objective functions are: 
𝐹𝐹𝑖𝑖𝑎𝑎𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 = ��𝑓𝑓1(𝐴𝐴𝐸𝐸𝐸𝐸)�,−�𝑓𝑓2(𝑁𝑁𝑁𝑁)��                    (2) 
Here, �𝑓𝑓2(𝑁𝑁𝑁𝑁)� is multiplied by -1 to obtain the fitness 
value for the second objective. This negative multiplication 
is done to minimize the gene subset size, as smaller gene 
subsets are generally preferred to avoid overfitting and 
improve computational efficiency. Therefore, the fitness 
evaluation is crucial for guiding the optimization process 
towards identifying gene subsets that balance classification 
accuracy and size effectively. 

D. Adaptive Parameter Initialization 
In the Adaptive Parameter Initialization step of the 
AAMOPSO for gene section method, adaptive control 
mechanisms are established to dynamically adjust the 
algorithm's parameters based on the observed performance 
metrics. This adaptation aims to optimize the convergence 
rate (𝐶𝐶𝑅𝑅), diversity (𝐷𝐷), and spread of the Pareto front 
(𝑁𝑁𝑆𝑆) throughout the optimization process. Initially, the 
adaptive parameters are set to their respective initial values: 
𝐶𝐶𝑅𝑅initial, 𝐷𝐷initial, and 𝑁𝑁𝑆𝑆initial. To set these initial values, we 
need to calculate them using appropriate metrics. Here's 
how each parameter can be calculated: 
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Figure 2: The Flowchart of the Proposed AAMOPSO Gene Selection Method

• Convergence Rate (CR): 𝐶𝐶𝑅𝑅initial represents the 
convergence rate at the beginning of the optimization 
process. Convergence rate measures how quickly the 
algorithm converges towards the Pareto front, indicating 
its efficiency in finding optimal or near-optimal 
solutions. In our AAMOPSO method, we calculate the 
convergence rate by computing the change in the 
hypervolume (HV) of the Pareto front over successive 
generations: 

𝐶𝐶𝑅𝑅 = 𝐻𝐻𝐻𝐻𝑡𝑡−1−𝐻𝐻𝐻𝐻𝑡𝑡
𝐻𝐻𝐻𝐻𝑡𝑡−1

                                    (3) 
where 𝐻𝐻𝐻𝐻𝑑𝑑−1 and 𝐻𝐻𝐻𝐻𝑑𝑑 represent the hypervolume of the 
Pareto front at generations 𝑎𝑎 − 1 and 𝑎𝑎 respectively. 
Therefore, the initial hypervolume can be computed based 
on the initial population of solutions. 
• Diversity (D): 𝐷𝐷initial denotes the diversity of solutions 

in the initial population. Diversity measures the spread or 

variety of solutions in the population, indicating how 
well the algorithm explores the search space. In our 
AAMOPSO method, we calculate the diversity is by 
computing the average pairwise distance between 
solutions in the population:  

𝐷𝐷 = 2
𝑁𝑁(𝑁𝑁−1)

∑ ∑ �𝑁𝑁𝑖𝑖 − 𝑁𝑁𝑗𝑗�𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁
𝑖𝑖=1                 (4) 

where  𝑁𝑁 is the population size, and �𝑁𝑁𝑖𝑖 , 𝑁𝑁𝑗𝑗� is the Euclidean 
distance between solutions 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑗𝑗. 
• Spread of Pareto Front (SP): 𝑁𝑁𝑆𝑆initial indicates the 

spread or uniformity of solutions along the Pareto front 
initially. The spread of the Pareto front measures how 
evenly solutions are distributed along the front, 
indicating the extent of coverage of the objective space. 
In our AAMOPSO method, we calculate the spread by 
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If ∆𝐶𝐶𝑅𝑅 < 0 and 
∆𝐷𝐷 > 0 do: 

𝐸𝐸1𝑑𝑑+1 = 𝐸𝐸1𝑑𝑑 + ∆𝐸𝐸1 
𝐸𝐸2𝑑𝑑+1 = 𝐸𝐸2𝑑𝑑 + ∆𝐸𝐸2 
𝑁𝑁𝑑𝑑+1 = 𝑁𝑁𝑑𝑑 − ∆𝑁𝑁 

If ∆𝐶𝐶𝑅𝑅 > 0 and 
∆𝐷𝐷 < 0 do: 

𝐸𝐸1𝑑𝑑+1 = 𝐸𝐸1𝑑𝑑 − ∆𝐸𝐸1 
𝐸𝐸2𝑑𝑑+1 = 𝐸𝐸2𝑑𝑑 − ∆𝐸𝐸2 
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If ∆𝑁𝑁𝑆𝑆 < 0 do: 
𝑅𝑅𝑑𝑑+1 = 𝑅𝑅𝑑𝑑 + ∆𝑅𝑅 

If ∆𝑁𝑁𝑆𝑆 > 0 do: 
𝑅𝑅𝑑𝑑+1 = 𝑅𝑅𝑑𝑑 − ∆𝑅𝑅 

NO 
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computing the average Euclidean distance between 
adjacent solutions along the Pareto front:  

𝑁𝑁𝑆𝑆 = 1
𝑀𝑀−1

∑ |𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑖𝑖+1|𝑀𝑀−1
𝑖𝑖=1                                 (5) 

where 𝑀𝑀 is the number of solutions on the Pareto front, and 
𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑖𝑖+1 are adjacent solutions on the front. Once these 
initial values are computed, they serve as the starting points 
for the adaptive parameter adjustment process. Throughout 
the optimization loop, the algorithm dynamically adjusts the 
parameters based on changes in 𝐶𝐶𝑅𝑅,𝐷𝐷, 𝑅𝑅𝐸𝐸𝐸𝐸 𝑁𝑁𝑆𝑆 to ensure 
efficient exploration and convergence towards high-quality 
solutions in the gene selection task. 

E. Optimization Loop 
In the Optimization Loop of the AAMOPSO for Gene 
Selection method, the algorithm iterates through multiple 
generations 𝑎𝑎 = (1,2, … ,𝐺𝐺𝑚𝑚𝑑𝑑𝑚𝑚). For each particle 𝑖𝑖, the 
velocity and position are updated using the MOPSO 
equations. The velocity update equation is given by: 
𝑎𝑎𝐸𝐸𝑙𝑙𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑅𝑅𝑎𝑎𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑙𝑙1𝐸𝐸1�𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗 − 𝑒𝑒𝐸𝐸𝑠𝑠𝑖𝑖,𝑗𝑗𝑘𝑘 � + 𝑙𝑙2𝐸𝐸2�𝐺𝐺𝑏𝑏𝑗𝑗 − 𝑒𝑒𝐸𝐸𝑠𝑠𝑖𝑖,𝑗𝑗𝑘𝑘 � (6) 
where 𝜔𝜔 is the inertia weight, 𝐸𝐸1 and 𝐸𝐸2 are cognitive and 
social learning factors respectively, 𝑙𝑙1 and 𝑙𝑙2 are random 
values between 0 and 1, 𝑆𝑆𝑏𝑏𝑖𝑖 ,𝑗𝑗 is the personal best position 
of particle 𝑖𝑖 for dimension 𝑗𝑗, and 𝐺𝐺𝑏𝑏𝑗𝑗 is the global best 
position for dimension 𝑗𝑗. The position update as stated 
below is then used to update the position of each particle. 
𝑒𝑒𝐸𝐸𝑠𝑠𝑖𝑖 ,𝑗𝑗𝑘𝑘+1 = 𝑒𝑒𝐸𝐸𝑠𝑠𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑎𝑎𝐸𝐸𝑙𝑙𝑖𝑖 ,𝑗𝑗𝑘𝑘+1                          (7) 
After updating the position, boundary constraints are 
applied to ensure that particles remain within the search 
space. The fitness of each particle is then evaluated using 
pre-processed gene expression data. Next, the personal best 
and global best positions are updated based on the fitness of 
the particles. Finally, the convergence rate, diversity, and 
spread of the Pareto front are updated using the pre-
processed data. These metrics provide insights into the 
convergence, diversity, and spread of solutions in the 
population, guiding the adaptive parameter adjustment 
process in subsequent iterations of the algorithm. 

F. Adaptive Parameter Adjustment 
To address the challenge of parameter tuning in the 
traditional MOPSO, we introduced an Adaptive Parameter 
Adjustment mechanism in our AAMOPSO method for gene 
selection. This mechanism dynamically adjusts the 
algorithm's parameters based on the observed performance 
metrics, aiming to optimize convergence, diversity, and 
overall efficiency in gene selection tasks. The adaptive 
adjustment starts by monitoring key performance metrics 
such as convergence rate (𝐶𝐶𝑅𝑅), diversity (𝐷𝐷), and spread of 
the Pareto front (𝑁𝑁𝑆𝑆) over successive generations. These 
metrics are calculated using the preprocessed gene 
expression data obtained from the autoencoder. The 
Adaptive Parameter Adjustment mechanism involves 
defining adaptive rules to adjust parameters such as swarm 
size, inertia weight, cognitive, and social learning factors 
dynamically. For instance, if the convergence rate is slow 
and diversity is high, indicating suboptimal exploration, the 
mechanism may increase cognitive and social learning 
factors while decreasing swarm size to encourage 
exploration. Conversely, if the convergence rate is rapid but 
diversity is low, indicating premature convergence, the 
mechanism may decrease cognitive and social learning 
factors while increasing swarm size to promote exploration. 
Additionally, adjustments are made based on the spread of 

the Pareto front to balance exploration and exploitation. The 
detailed Adaptive Parameter Adjustment mechanism is 
shown as: 
Step 1: Monitoring Performance Metrics: Calculate 
convergence rate (CR), diversity (D), and spread of the 
Pareto front (SP) at each generation using preprocessed 
gene expression data obtained from the autoencoder. 
Step 2: Calculate Changes in Performance Metrics: 
Compute changes in performance metrics from the initial 
values: 
∆𝐶𝐶𝑅𝑅 = 𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶initial

𝐶𝐶𝐶𝐶initial
                              (8) 

∆𝐷𝐷 = 𝐷𝐷−𝐷𝐷initial
𝐷𝐷initial

                                 (9) 

∆𝑁𝑁𝑆𝑆 = 𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆initial
𝑆𝑆𝑆𝑆initial

                             (10) 
Step 3: Adaptive Parameter Adjustment: Based on the 
changes in performance metrics, dynamically adjust the 
algorithm's parameters using adaptive rules: 
• If ∆𝐶𝐶𝑅𝑅 < 0 and ∆𝐷𝐷 > 0, increase cognitive and social 

learning factors (𝐸𝐸1) and (𝐸𝐸2), decrease swarm size (𝑁𝑁) 
such as: 

𝐸𝐸1𝑑𝑑+1 = 𝐸𝐸1𝑑𝑑 + ∆𝐸𝐸1                            (11) 
𝐸𝐸2𝑑𝑑+1 = 𝐸𝐸2𝑑𝑑 + ∆𝐸𝐸2               (12) 
𝑁𝑁𝑑𝑑+1 = 𝑁𝑁𝑑𝑑 − ∆𝑁𝑁                            (13) 

•  If ∆𝐶𝐶𝑅𝑅 > 0 and ∆𝐷𝐷 < 0, decrease cognitive and social 
learning factors (𝐸𝐸1) and (𝐸𝐸2), increase swarm size (𝑁𝑁) 
such as: 
 
𝐸𝐸1𝑑𝑑+1 = 𝐸𝐸1𝑑𝑑 − ∆𝐸𝐸1                            (14) 
𝐸𝐸2𝑑𝑑+1 = 𝐸𝐸2𝑑𝑑 − ∆𝐸𝐸2               (15) 
𝑁𝑁𝑑𝑑+1 = 𝑁𝑁𝑑𝑑 + ∆𝑁𝑁                            (16) 
 
• Adjust inertia weight (𝑅𝑅) based on changes in spread of 

Pareto front (𝑁𝑁𝑆𝑆). If ∆𝑁𝑁𝑆𝑆 < 0, increase 𝑅𝑅, such as: 
𝑅𝑅𝑑𝑑+1 = 𝑅𝑅𝑑𝑑 + ∆𝑅𝑅                           (17) 
 
• If ∆𝑁𝑁𝑆𝑆 > 0, decrease 𝑅𝑅, such as: 
𝑅𝑅𝑑𝑑+1 = 𝑅𝑅𝑑𝑑 − ∆𝑅𝑅                          (18) 
Step 4: Update Adaptive Parameters: Update the initial 
values of performance metrics for the next iteration: 
𝐶𝐶𝑅𝑅initial = 𝐶𝐶𝑅𝑅                                  (19) 
𝐷𝐷initial = 𝐷𝐷                            (20) 
𝑁𝑁𝑆𝑆initial = 𝑁𝑁𝑆𝑆                               (21) 
By dynamically adapting parameters based on the 
optimization process's performance, the AAMOPSO 
method effectively addresses the challenge of parameter 
tuning in gene selection, leading to improved optimization 
performance and robustness. 

G. Termination 
At this step, the termination condition is checked. If the 
number of iterations is not more than the maximum allowed 
iteration, fitness function calculation, particle position, and 
velocity updating and mutation operation will be repeated. 
Otherwise, these steps will be stopped, and the global best 
position reported as the final feature set. Therefore, by 
following this stepwise working of the AAMOPSO method, 
gene selection can be efficiently performed while 
addressing scalability and parameter tuning issues using 
autoencoder-based preprocessing and adaptive parameter 
adjustment. 
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IV. RESULTS AND DISCUSSIONS 
A. Experimental Setup 
The performance of the proposed AAMOPSO method was 
evaluated using four microarray datasets available at: 

https://github.com/Pengeace/MGRFE-GaRFE, summarized 
in Table 1. All datasets were pre-processed to remove 
missing values and normalized using min-max scaling to 
ensure consistency across experiments. 

Table 1: Dataset Description 
No. Dataset Instances Genes Classes 

1 Brain Tumor (BT) 90 5920 2 
2 Leukaemia (LK) 72 5327 2 
3 Lung Cancer (LCN) 203 12600 5 

5 Breast Cancer 
(BRC) 104 22,283 2 

 
The effectiveness of the proposed AAMOPSO method was 
compared against state-of-the-art metaheuristic algorithms 
commonly used for gene selection include: MORPSO_ECD 
[13], ANPMOPSO [14], MPSONC [20], MaPSOGS [19], 
and traditional MOPSO [21]. These comparisons were 
conducted on desktop with Intel Core i7 processor, 2.4 GHz 
with 16GB RAM by using Matlab 2018a mathematical 
development environment as the execution platform. All 
algorithms utilized a population size of 200 and 50 
iterations. In MaPSOGS, MPSONC, MORPSO_ECD, 
ANPMOPSO, and MOPSO, both 𝐸𝐸1and 𝐸𝐸2 were set to 2.05 
and w was set to 0.7298 [13] 
 [14]. Other parameters were configured according to 
corresponding references [19][20][21]. To ensure fair 
comparison and reliable evaluation, these experimental 
settings were applied consistently across all datasets. To 
enhance reliable results, each algorithm was run ten times 
for each microarray dataset. The average classification 
accuracy and number of selected genes across these ten runs 
were recorded and compared across algorithms. 

B. Comparison of the Number of Selected Genes 
Table 2 compares the average number of genes selected by 
AAMOPSO and five other multi-objective gene selection 
methods across all four microarray datasets. AAMOPSO 
consistently selects the smallest number of genes across all 
datasets, with as few as 8–17 genes, while still achieving 
superior classification accuracy (as shown in Figure 3.). In 
contrast, traditional methods like MOPSO and MPSONC 
tend to select significantly larger subsets (e.g., 44 genes for 
MOPSO in LCN), indicating possible redundancy and less 
efficient selection. 
These results highlight AAMOPSO’s strength in producing 
compact, non-redundant gene subsets that maintain or even 
improve classification performance. The integration of 
autoencoder-based feature compression and adaptive 
optimization helps reduce dimensionality effectively, 
making AAMOPSO particularly suitable for high-
dimensional biomedical datasets where minimal gene sets 
are preferred for cost-effective diagnostic applications. 

 
Table 2: The number of selected genes by different multi-objective gene selection methods. 

Dataset                           MOPSO MPSONC MaPSOGS ANPMOPSO MORPSO_ECD AAMOPSO 

BT 30 18 21 15 12 10 
LK 27 16 18 10 6 8 

LCN 44 32 27 18 14 12 
BRC 35 24 29 25 22 17 

C. Classification Performance Evaluation Using SVM 
Classifie 

This experiment evaluates the performance of AAMOPSO 
gene selection method by comparing it with five gene 
selection methods on four microarray datasets (BRC, LNC, 
LK, BT). An SVM classifier was used consistently across 
all methods to measure classification accuracy based on 
varying numbers of selected genes. 
The results depicted in Figure 3 demonstrate that the 
proposed AAMOPSO method consistently outperforms 
existing multi-objective gene selection approaches across  
 
 
 
 
 
 
 

 
 
 
all four datasets. AAMOPSO achieves higher classification 
accuracy with fewer selected genes, indicating its 
effectiveness in identifying compact yet highly informative  
gene subsets. Notably, in datasets like BRC and BT, 
AAMOPSO reaches near-peak accuracy (~95%) with only 
15 genes, outperforming competitors such as 
MORPSO_ECD, ANPMOPSO, and MPSONC. This early 
convergence reflects the model’s ability to extract 
discriminative features efficiently, aided by the integration 
of autoencoder-based dimensionality reduction. 
 
 
 
 
 
 

https://github.com/Pengeace/MGRFE-GaRFE
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Figure 3: The Classification Accuracy vs. Number of Genes Results on Four Microarray Datasets for all Comparative Gene 

Selection Methods

In contrast, conventional methods like MOPSO and 
MaPSOGS exhibit slower performance gains and lower 
overall accuracy, particularly with smaller gene subsets, 
suggesting less effective exploration and selection 
strategies. Across all datasets, AAMOPSO maintains a clear 
margin of improvement, especially in the more complex 
LNC and LK datasets, highlighting its robustness. Overall, 
these results validate the superiority of AAMOPSO in 
achieving high classification performance with minimal 
gene subsets, making it a powerful tool for gene selection in 
high-dimensional biomedical data. 

D. Functional and Biological Insights of the Selected 
Genes 

Table 3 presents the top five most frequently selected genes 
by the proposed AAMOPSO algorithm across four 
benchmark gene expression datasets: LK, BT, LCN, and 

BRC. These genes were consistently identified across 
multiple runs, indicating their strong relevance and 
discriminative power in classifying cancer types. For 
instance, in the LK dataset, genes such as X13934 and 
Z79881 were frequently selected, suggesting their potential 
as biomarkers for leukemia. Similarly, in the BT dataset, 
genes like H75832 and 5189 appeared prominently, while 
in LCN and BRC, genes such as 39799, 1310_at, and 
NP_053056 stood out for their high selection frequency. 
     This consistent selection across different runs 
demonstrates AAMOPSO's robustness in identifying 
biologically meaningful and informative gene subsets. The 
results further support the method's effectiveness not just in 
achieving high classification accuracy, but also in 
uncovering potentially significant genetic markers for 
further biomedical research and validation.

Table 3: The top five frequently selected genes by AAMOPSO on all datasets 

LK BT LCN BRC 
Gene 
no. 

Gene 
name 

Gene 
no. 

Gene 
name 

Gene 
no. 

Gene 
name 

Gene 
no. Gene name 

4040 X13934 4213 U49817  3188 39799 346 NP_005749 
1722 M37891  5189 H75832 265 42170 1842 NP_001885 
2222 M73138  1715 R93186 2570 34884 850 NP_002658 
129 L23852 6322 Y10317  435 1310_at 1749 NP_053056 
5121 Z79881  5901 N80358 4207 33012_at 669 LIC561578 

E. Statistical Significance of Classification Performance 
Table 4 presents the p-values obtained using a one-tailed t-
test to statistically compare the classification accuracy of 
each algorithm across four datasets: BT, LK, LCN, and 
BRC. The p-values indicate the statistical significance of 
improvements over a baseline (typically lower-performing 
algorithms), with lower values representing stronger 
evidence of performance difference. Across all datasets,  

 
AAMOPSO achieves the lowest or near-lowest p-values, 
such as 5.18E-10 (BT), 3.02E-05 (LK), and 2.71E-12 
(BRC), highlighting the high statistical significance of its 
superior classification performance. While some methods 
like MORPSO_ECD and ANPMOPSO also yield 
competitive p-values, AAMOPSO consistently 
demonstrates better or comparable statistical reliability.
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Table 4: P-Value Obtained Using Statistical Testing (One-Tailed T-Test) for Each Algorithm 

Dataset                           MOPSO MPSONC MaPSOGS ANPMOPSO MORPSO_ECD AAMOPSO 

BT 3.57E-02 1.33E-05 1.72E-07 3.25E-08 2.23E-04 5.18E-10 
LK 3.68E-06 1.46E-05 2.19E-07 4.89E-12 2.19E-06 3.02E-05 

LCN 3.12E-02 1.24E-08 2.41E-03 3.35E-03 2.88E-10 3.71E-09 
BRC 3.22E-04 1.88E-08 2.23E-04 2.25E-04 1.78E-06 2.71E-12 

 
These results confirm that the improvements offered by 
AAMOPSO are not due to random variation but are 
statistically meaningful, reinforcing its robustness and 
reliability for gene selection in high-dimensional cancer 
datasets. 

V. CONCLUSIONS 
In this study, we proposed AAMOPSO—an Autoencoder-
based Adaptive Multi-Objective Particle Swarm 
Optimization approach—for effective gene selection in 
high-dimensional gene expression data. By integrating a 
deep autoencoder for unsupervised dimensionality 
reduction and an adaptive parameter tuning mechanism 
within the MOPSO framework, AAMOPSO addresses the 
core challenges of scalability and dynamic search control in 
gene selection tasks. Extensive experiments conducted on 
four benchmark cancer datasets (BRC, LCN, LK, BT) 
demonstrate that AAMOPSO consistently outperforms 
state-of-the-art methods in terms of classification accuracy, 
achieving competitive results using significantly fewer 
genes. Statistical analysis using one-tailed t-tests further 
confirms the superiority and reliability of AAMOPSO’s 
performance. 
Moreover, AAMOPSO’s ability to frequently identify 
biologically meaningful genes across datasets underlines its 
potential for real-world biomedical applications such as 
biomarker discovery. The compact and highly 
discriminative gene subsets selected by AAMOPSO not 
only improve model interpretability but also reduce 
downstream analysis costs. Overall, AAMOPSO offers a 
robust, scalable, and accurate solution for gene selection, 
paving the way for enhanced genomic data analysis and 
precision medicine. 
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